下面可以计算原副边电压应力了:
原边开关管电压应力: Vce_max=Vdc_spike+Vindc_max+Vs*Nps (9)
副边整流管应力:Vdr=Vindc_max/Nps+Vs(10)
上面Vdc_spike是漏感导致的电压尖峰,可以受到原边snubber的抑制,建议值为120V。根据上述公式可以选择原边MOS和副边二极管了。
下面要确定的是初级侧峰值电流Ipk,由公式(3)得出Ipk=4Io/Nps (11)
IPk确定后因为芯片内部CS pin参考电压Vcs_ref为0.5V,一旦采样电阻RCS上电压达到0.5V,开关关断,tonp结束。Rcs=Vcs_ref/Ipk(12).Rcs需要从实际的电阻系列中取值,根据实际情况进行微调,考虑到采样精度,Rcs的精度建议为1%或者更小。
下面要确定变压器感量了,在一些应用中感量的大小是由电流纹波率r来确定的,但是在本案例中系统一直工作在DCM,所以r为固定值:2。 所以我们没办法使用该公式来确定感量Lp的大小。既然没有了r的约束,自然的我想把感量Lp弄小点,这样变压器的个头也可以越来越小,那么我们可以为所欲为的降低Lp的大小吗? 这时我们应该自然地想到这个公式:Po=1/2Lp*Ipk ²*fsw*η (13) 其中Po是系统输出功率,Lp是原边感量,Ipk是原边峰值电流大小,fsw是工作频率,η是效率。可以看到若输出功率不变,而Ipk已经是固定值,随着Lp的降低fsw会逐渐上升。那么fsw上升的天花板有哪些呢? 首先本案例用的是三极管驱动,受到存储电荷恢复的影响三极管的工作频率不能太高,建议在60KHZ以下。同时芯片FB电压采样有一个固定延时如4.2us,该延时是为了避开原边Q1刚关断时产生的ring的,防止采样失真。若是工作频率不断提高,但采样延时是固定的,那么4.2us后tons已经结束了,同样会导致采样失真。在这里fsw建议为60KHZ,从而得到Lp=2Po/( Ipk ²*fsw*η) (14)
下面需要确定是原副边匝数了:原边匝数取值应保证磁性不饱和,既,Np≧(Lp*Ipk)/Ae*Bmax.其中Ae是选择变压器的有效磁芯面积,Bmax是最大磁通变化量,对于一般的铁氧体材质如PC40建议为0.3T. Nps和Np都确定后就可以得到副边匝数Ns=Np/Nps;以及辅助绕组匝数Na=Ns*Va/Vs,其中Va是辅助线圈的电压,建议取值为11V左右。为什么取这个值,这涉及到反激电路在空载和满载时VCC电容上电压会大幅度的变化。
首先空载或者轻载时因为打的能量脉冲很弱,间隔时间又长,同时变压器可以等效为电感,初级侧Q1关断后这个原边电感便向次级侧和辅助绕组侧灌输能量,对于原边绕组而言,它是分不清次级侧和辅助绕组侧的,这两个绕组都等效为负载,也就是出现次级侧和辅助侧抢能量的情况(这就像食品匮乏时大家都在疯抢东西吃),所以你会观察到原边Vcc电容Cvcc上电压波动很大,从11V跌落到9V都有可能,而芯片VCC有一个UVLO欠压保护点,一旦触发该保护,芯片就保护重启了。。。。所以我们希望轻载时VCC电压高一点不要触发到这个欠压保护点。
但是呢VCC电压又不能取得太高,因为当满载的时候首先能量脉冲比空载时大,而且脉冲频率很高,这时能量很足,VCC电容上的电压波动就很小了,原副边也不像轻载时那样相互抢能量了(这就像食品丰富了,大家都吃饱了反而相互谦让起来,都恨不得对方多吃点,自己不要撑着)。同时满载时对VCC电容还有一个不速之客,那就是原边刚关断时产生的RING,这股RING也是能量,会耦合到辅助绕组侧最终传递到VCC电容上使得VCC电压上升很高,所以此时并不满足和次级侧电压之间的匝比公式。如果VCC电压上升到27V时会触发VCC过压保护,然后你就会发现一个奇怪的现象,加了满载后机子不停的重启,你还以为是过载保护了,实际上确是触发VCC过压保护了。这就是为什么轻载时VCC电压也不要取得过高,如果实在高怎么办?VCC绕组整流二极管用慢恢复的,可以帮助消化吸收掉一部分RING带来的能量帮助VCC电压降低。又或者适当增大Ra的阻值(图2).
好了通过以上的步骤确定了变压器的参数:Nps,LP,Np,Ns。我们可以发现上述参数确定的方法和顺序都有一定的考究,网上计算变压器公式很多,但不能随便拿来就套用,要根据实际的芯片控制策略和工作模式来确定,这有点像玩游戏的解迷部分。下个章节我们会举实际的案例,一步一步的解析参数的确定过程,力求让大家产生更加具体的感觉,同时再把输入高低压线补和输出线补得原理讲解清楚。敬请期待!